Create a free Manufacturing.net account to continue

UC Boulder method of producing hydrogen fuel from sunlight only approach among eight competing technologies projected to meet cost targets VIDEO

A report commissioned by the U.S. Department of Energy has concluded that a novel University of Colorado Boulder method of producing hydrogen fuel from sunlight is the only approach among eight competing technologies that is projected to meet future cost targets set by the federal...

UC Boulder method of producing hydrogen fuel from sunlight only approach among eight competing technologies projected to meet cost targets VIDEO

A report commissioned by the U.S. Department of Energy has concluded that a novel University of Colorado Boulder method of producing hydrogen fuel from sunlight is the only approach among eight competing technologies that is projected to meet future cost targets set by the federal agency.

The process, which is being developed by Professor Alan Weimer's research team of CU-Boulder's chemical and biological engineering department, involves an array of mirrors to concentrate the sun's rays and create temperatures as high as 2,640 degrees Fahrenheit. The process consists of two steps -- each involving reactions of a thin film of metal ferrite coating with a reactive substrate contained in a solar receiver -- to split water into its gaseous components, hydrogen and oxygen.

Currently, the lowest cost method for producing hydrogen is the steam-methane reforming of natural gas, primarily methane. In this process, significant amounts of carbon dioxide -- a powerful greenhouse gas -- are released into the atmosphere.

The DOE commissioned 76-page report was produced by TIAX, a technology processing and commercialization company headquartered in Lexington, Mass. The report authors evaluated process conditions, major capital equipment, materials and utilities usage rates, estimated equipment sizes, financial and operating assumptions.

CU's approach does not result in greenhouse gas emissions and is more cost effective than competing technologies because the water-splitting reactions occur at lower temperatures and are faster, said Weimer. In addition, less energy and fewer active materials are required, resulting in lower costs.





SOURCE