Create a free Manufacturing.net account to continue

Honda Advances Hydrogen Strategy with Production Launch

The launch of a fuel cell electric vehicle is in operation in Ohio.

Assembly of the IPU case for the all-new 2025 CR-V e:FCEV.
Assembly of the IPU case for the all-new 2025 CR-V e:FCEV.
Honda

Honda celebrated the start of production of the all-new 2025 Honda CR-V e:FCEV fuel cell electric vehicle (FCEV) at the Performance Manufacturing Center (PMC) in Ohio.

The all-new CR-V e:FCEV is the only FCEV made in America, as well as the first production1 hydrogen FCEV in the United States to combine an all-new U.S.-made fuel cell system with plug-in EV charging capability. The CR-V e:FCEV received a 270-mile EPA driving range rating, combining the fuel cell system with plug-in charging to provide up to 29 miles2 of EV driving around town with the flexibility of fast hydrogen refueling for longer trips.

In addition to producing the Honda CR-V e:FCEV in America, the next gen fuel cell system that powers it is also made in the U.S. at Fuel Cell System Manufacturing LLC, in Brownstown, Michigan – the joint venture production facility established by Honda and General Motors (GM).

The new fuel cell system was co-developed by Honda and GM, achieving higher efficiency and increased refinement, with durability performance doubled and cost reduced by two-thirds compared to the previous fuel cell system in the Honda Clarity Fuel Cell.

PMC Innovations for CR-V e:FCEV Production

Production technicians at PMC navigated several challenges related to new production equipment and processes to effectively transition from building the Acura NSX supercar to the Honda CR-V e:FCEV.  Following is a look at several of these key initiatives:

  • New components: PMC technicians are taking on multiple new assembly processes specific to producing a vehicle powered by both a fuel cell system and a plug-in EV battery, requiring multiple connections for the vehicle's two power sources and the Power Supply Connector that can provide electrical power for various external devices. These include:
    • Sub-assembly of two hydrogen tanks, attaching high pressure piping and other parts and then installing the tanks in the vehicle
    • Compressing hydrogen to 10,000 PSI via a new onsite station used to fill the CR-V e:FCEV hydrogen fuel tanks
    • Installation of the fuel-cell system along with connecting high pressure piping and wiring
    • Sub-assembly and installation of the under-floor battery
  • New Weld System: Transitioning to the CR-V e:FCEV required a complete transformation of the Weld Department, from a highly-automated welding system created for an aluminum spaceframe to a multi-material unibody construction.
    • The previous robotic weld system was removed and replaced with new steel welding robots which were installed with characteristics of a traditional weld system but are unique from mass production plants with a flexible fixture system that rolls around on a track.
    • PMC technicians also now perform some manual MIG welding to apply welds that are difficult for robots to reach to attach closure parts for the doors, hood and tailgate.
  • Paint System Modifications: The larger and heavier all-steel body of the CR-V e:FCEV requires a different corrosion protection application process than the smaller, all-aluminum Acura NSX.
    • The CR-V e:FCEV marks the first application in Honda North America of zirconium to a mixed metal, uni-body, and utilizes the same high-appearance paint coating as the NSX.  The E-coat dip tank was designed for the smaller surface area of the NSX spaceframe, not a full frame vehicle like CR-V with more surface area inside. So, engineers had to modify the dip tank to enable the CUV body shape to enter at a 38-degree angle, steeper than the 15-degree angle for NSX. More precise control of the E-coat pumps also was required for CR-V, to create higher circulation of the E-coat to cover the surface area inside the frame.
    • Following e-coating, but prior to application of the final paint finish, sealer is applied to prevent water leaks. The CR-V body is mounted on a rotisserie, but unlike the previous equipment arm used to turn the lighter NSX spaceframe, a more robust arm that can maintain stability of the heavier CR-V steel frame is used to turn the frame on its side. This enables associates to manually apply sealer similar to the application for the NSX.

    For more information, visit https://hondainamerica.com/.

    More in Automotive